Feeds:
Posts
Comments

Live Conference Coverage: International Dialogue in Gynecological Oncology, From Bench to Bedside, Ovarian Cancer

Reporter: Stephen J. Williams, Ph.D.

Join Live on Wednesday May 22, 2024 for an international discussion on the current state of ovarian cancer diagnostics and therapeutics, and potential therapies and biomarkers, and biotargets.  Topics including potential new molecular targets for development of ovarian therapeutics, current changes in ovarian cancer clinical treatment protocols, chemo-resistance, and the use of Artificial Intelligence (AI) in the diagnosis and treatment of cancer will be discussed.

International Dialogue in Gynecological Oncology, From Bench to Bedside, ovarian Cancer meeting flyer

To join by Zoom click the link below

https://temple.zoom.us/j/94458267823 

Agenda:

Introduction

  • 00/15.00 Professor Giordano and Professor Ercoli
  • 10/15.10 We Have Never Been Only Human: a new perspective to defeat ovarian cancer (C. Martinelli)

Molecular Section

  • 20/15.20 DNA Repair mechanisms: understanding their role in cancer development and chemoresistance (L. Alfano)
  • 35/15.35 Progranulins: a new target for oncological treatment (A. Morrione)
  • 50/15.50 Modulation of gene expression and its applications (M. Cuomo)
  • 10.05/16.05 Commanding the cell cycle: the role of CDKs (S.R. Burk
  • 10.20/16.20 Drug development from nature (M. D’Angelo

Clinical Section

  • 05/17.05 Core principles of Radiologic Diagnosis & Staging in Ovarian Cancer(A. Blandino)
  • 20/17.20 Key Indications for Nuclear Medicine in Ovarian Cancer (S. Baldari)
  • 35/17.35 Cutting Edge Decision: Understanding Surgical Indications and Outcomes in Ovarian Cancer (A. Ercoli)
  • 50/17.50 Gold Standard in Oncology for Ovarian Cancer (N. Silvestris)
  • 12.05/18.05 Role of Radiotherapy in Ovarian Cancer (S. Pergolizzi)

Conclusion

12.20/18.20 AI Applied to medical science (V. Carnevale)

Speakers

  • – Professor Alfredo Blandino: Professor Blandino holds the esteemed positions of Head of school of Radiology and director of the department of radiology at the University of Messina. He has made significant contributions to diagnostic imaging with over hundreds of publications to his name, Professor Blandino’s work exemplifies excellence and innovation in radiology.
  • – Professor Alfredo Ercoli, serves as the Director of the Department of Gynecology and Obstetrics at the “G. Martino” University Hospital in Messina. He is also head of school of gynecology and obstetrics at Messina University. Starting his research in France with studies on pelvic anatomy that became a cornerstone in medical literature, He is a pioneer in advanced gynecologic surgery, including laparoscopic and robotic procedures, having performed over thousands of surgical interventions. His research focuses on gynecologic oncology, advanced gynecologic surgery, and endometriosis, urogynecology. Professor Ercoli’s dedication to education and his numerous publications have significantly advanced the field of gynecology.
  • Professor Sergio Baldari, an eminent figure in nuclear medicine. Professor Baldari is the Director of the department of nuclear medicine and head of school of nuclear medicine at the  University of Messina. He has authored or co-authored over 500 publications, with a focus on diagnostic imaging and the use of PET and radiopharmaceuticals in cancer treatment. His leadership and expertise have been recognized through various prestigious positions and awards within the medical community.
  • – Professor Nicola Silvestris is the Director of UOC Oncologia Medica at the University of Messina. His extensive research in cancer, has led to over 360 peer-reviewed publications. Professor Silvestris has made significant contributions to translational research and the development of guidelines for managing complex oncological conditions. His work continues to shape the future of cancer treatment.
  • Professor Stefano Pergolizzi, a leading expert in radiation oncology. Professor Pergolizzi serves as the Director of the department of radiotherapy and head of the school of radiotherapya at the University of Messina. He is also the president of the Italian Association of Radiotherapy and Clinical Oncology (AIRO) His research focuses on advanced radiotherapy techniques for cancer treatment. With a career spanning several decades, Professor Pergolizzi has published numerous papers and has been instrumental in developing innovative therapeutic approaches. His dedication to patient care and education is exemplary.
  • Margherita D’angelo: Graduated in Molecular Biology with honors from the Federico II University of Naples.
    Third year intern in Food Science at the Luigi Vanvitelli University of Naples.
    Research intern in Molecular oncology with the project of developing novel drugs starting from food waste at the Sbarro Institute for Cancer Research and Molecular Medicine at Temple University, Philadelphia (USA), directed by Dr A. Giordano.
  • Vincenzo Carnevale, Ph.D.

Dr. Carnevale is an Associate Professor in the Institute for Computational Molecular Science in the College of Science & Technology, Temple University.  He holds multiple NIH RO1 and NSF grants. Vincenzo Carnevale received B.Sc. and M.Sc. degrees in Physics from the University of Pisa and a PhD from SISSA – Scuola Internazionale Superiore di Studi Avanzati in Trieste, Italy. The Carnevale research group uses statistical physics and machine learning approaches to investigate sequence-structure-function relations in proteins. A central theme of the group’s research is how interactions give rise to collective phenomena and complex emergent behaviors. At the level of genes, the group is interested in epistasis – the complex entanglement phenomenon that causes amino acids to evolve in a concerted fashion – and how this shapes molecular evolution. At the cellular level, the group investigates how intermolecular interactions drive biomolecules toward self-organization and pattern formation. A long-term goal of the group is understanding the molecular underpinnings of electrical signaling in excitable cells. Toward these goals, the group applies and actively develops an extensive arsenal of theoretical and computational approaches including statistical (mean)field theories, Monte Carlo and molecular dynamics simulations, statistical inference of generative models, and deep learning.

  • Professor Andrea Morrione, Ph.D: Research Associate Professor, CST Temple University; After his studies in Biochemistry at Universita’ degli Studi Milano, Milan Italy, Dr. Morrione moved to USA in 1993 and has been working in the field of cancer biology since his postdoctoral training at the Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA in the laboratory of Dr. Renato Baserga, one of the leading experts in IGF-IR oncogenic signaling. In 1997 Dr. Morrione joined the Faculty of Thomas Jefferson University in the Department of Microbiology. In 2002 after receiving an NIH/NIDDK Career Development Award Dr. Morrione joined the Department of Urology at Jefferson where from 2008 to 2018 serves as the Director for Urology Basic Science and Associate Professor. Dr. Morrione joined the Department of Biology and the Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology as Associate Professor of Research, and he is currently professor of Research and Deputy Director of the Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology. He is a full member of the AACR.

 

  • Canio Martinelli, M.D.: Dr. Marinelli received his MD from Catholic University of the Sacred Heart in Rome, Visiting researcher at SHRO Temple University in Philadelphia, PhD candidate in Translational Molecular Medicine and Surgery & GYN-OB resident at UNIME. He has published numerous clinical papers in gynecologic oncology, risk reduction, and therapy and, most recently investigating clinical utilities of generative AI in gynecologic oncology.
  • Sharon Burk, Sharon Burk is a PhD student with Professor Antonio Giordano at the University of Siena, Italy in the department of Medical Biotechnologies, studying the role of Cyclin Dependent Kinase 10 in Triple Negative Breast Cancer. She received her Bachelor’s of Arts Degree from the University of California, Berkeley with a double major in molecular and cell biology and Italian studies.   She is a member of AACR.

This conference is being sponsored by Sbarro Health Research Organization and the Department of Biology, College of Science & Technology, Temple University.

To join by Zoom click the link below

https://temple.zoom.us/j/94458267823 

A QR code will be supplied at conference start, in addition to Zoom chat, to allow for questions to be submitted.

This conference is free to join on Zoom and will be covered live on @pharmaBI 

and on

 

AACR 2023 Meeting Highlights: Reports from Plenary Sessions and Major Symposium Talks

Reporter: Stephen J. Williams, Ph.D.

Highlights from Sunday April 16,2023

Nobel Laureate will discuss her work investigating the glycobiology of cancer


Carolyn R. Bertozzi, PhD, shared the Nobel Prize in Chemistry in 2022 for her invention of bioorthogonal chemistry, which is a class of chemical reactions that are compatible with living systems. These chemistries allow researchers to explore molecular imaging and drug targeting without interfering with natural biological processes. Bertozzi’s AACR Award for Outstanding Achievement in Chemistry in Cancer Research, and her lecture, focus on the glycobiology of cancer.

Carolyn R. Bertozzi, PhD
Carolyn R. Bertozzi, PhD

“There is a family of receptors on immune cells that bind carbohydrates,” said Bertozzi, Baker Family Director of the Sarafan ChEM-H Institute and Anne T. and Robert M. Bass Professor of Chemistry at Stanford University. “Called the ‘sialic acid-binding immunoglobulin-like lectins’ — abbreviated Siglecs — these receptors bind carbohydrates that possess the sugar sialic acid. There are 14 Siglec family members in humans and they are found in various combinations on every type of immune cell — T cells, macrophages, neutrophils, NK cells, all of the immune cell types that are important in anti-cancer immunity. As tumors progress, they often overexpress sialoglycan ligands for Siglecs, which allows them to engage these receptors and suppress immune-cell reactivity. We have focused on developing immune therapies that disrupt Siglec-ligand interactions.”

Bertozzi will discuss this area of her research during her award lecture, Targeting the Glycocalyx for Cancer Immune Therapy, at 4:30 p.m. ET Sunday in Tangerine Ballroom 3-4 (WF3-4) at the convention center.

“The signaling biochemistry of the Siglec family of checkpoint receptors is similar to the signaling biochemistry that PD-1 participates in,” Bertozzi explained. “They are like PD-1 except that they bind sugars rather than proteins, and they are present on every type of immune cell, including activated T cells, but also myeloid-derived cell types.”

“Glycobiology is an important area to become more familiar with if you want to truly be able to move the needle,” she said. “The science we have uncovered has led to the identification of exciting new targets, which has enabled us to invent new therapeutic modalities.”

Familiar small molecules and antibodies are of marginal use in targeting sugars, Bertozzi explained. Because carbohydrates are different types of molecules than traditional cancer targets, they need nontraditional mechanisms of action.A new class of targeted enzymes can edit the cell surface glycocalyx (or sugar coating) and deprive cancers of their ability to engage Siglec receptors. Without the broad inhibitory activity of Siglecs, the immune system remains free to engage and, hopefully, destroy tumors. At least one investigative agent is in phase I human trials and is poised to move into phase II.

“Glycobiology might explain why so many patients don’t respond to anti-PD-1 and anti-PD-L1 antibodies,” Bertozzi said. “We think a large fraction of tumors suppress the immune response through Siglec engagement.”

Other Articles on Real Time Coverage of AACR Meetings on this Open Access Scientific Journal Include:

Part Two: List of BioTech Conferences 2013 to Present

Tricuspid Flow Optimizer, FDA Approved, 6 months follow up of the First-in-Man Implantation in Rome, Italy

Reporter: Aviva Lev-Ari, PhD, RN

 

Tricuspid Flow Optimizer graphic courtesy of Triflo Cardiovascular.

TR – Tricuspid Regorgitation

the Tricuspid Flow Optimizer, was developed by Triflo Cardiovascular, a U.S.-based biomedical company founded in 2017 by a team of structural heart specialists.

After using CT and transesophageal echocardiography (TEE) scans to confirm the procedure was feasible, the care team implanted the device. It includes three anchors that are positioned at the tricuspid valve’s commissures. A 37 French steerable catheter was positioned in the patient’s right atrium for the implant, and the device’s positioning was “optimized” before being released. A second TEE scan confirmed the device had been successfully implanted. The patient was discharged after four days of recovery, and a permanent pacemaker was required after three weeks due to slow-rate AFib.

Six months later, the authors reported, reserve remodeling of the right ventricle and a clear improvement in TR were evident, moderate tricuspid regurgitation.

“The minimal interaction with the right cardiac chamber resulted in an easy implantation of the pacemaker; the polymer leaflets and the minimal footprint demonstrated an optimal adaptation to the native anatomy and stability through six months’ follow-up.”

SOURCES

Original Study:

1. Gian Paolo Ussia, Antonio Mangieri, Valeria Cammalleri, et al. 6 Months’ Follow-Up of the First-in-Man Implantation of a Novel Tricuspid Flow Optimizer. J Am Coll Cardiol Intv. Apr 17, 2024.

The Health Care Dossier on Clarivate PLC: How Cortellis Is Changing the Life Sciences Industry

Curator: Stephen J. Williams, Ph.D.

Source: https://en.wikipedia.org/wiki/Clarivate 

Clarivate Plc is a British-American publicly traded analytics company that operates a collection of subscription-based services, in the areas of bibliometrics and scientometricsbusiness / market intelligence, and competitive profiling for pharmacy and biotechpatents, and regulatory compliancetrademark protection, and domain and brand protection. In the academy and the scientific community, Clarivate is known for being the company that calculates the impact factor,[4] using data from its Web of Science product family, that also includes services/applications such as PublonsEndNoteEndNote Click, and ScholarOne. Its other product families are Cortellis, DRG, CPA Global, Derwent, MarkMonitor, CompuMark, and Darts-ip, [3] and also the various ProQuest products and services.

Clarivate was formed in 2016, following the acquisition of Thomson Reuters‘ Intellectual Property and Science business by Onex Corporation and Baring Private Equity Asia. Clarivate has acquired various companies since then, including, notably, ProQuest in 2021.

 

Further information: Thomson Scientific

Clarivate (formerly CPA Global) was formerly the Intellectual Property and Science division of Thomson Reuters. Before 2008, it was known as Thomson Scientific. In 2016, Thomson Reuters struck a $3.55 billion deal in which they spun it off as an independent company, and sold it to private-equity firms Onex Corporation and Baring Private Equity Asia.

In May 2019, Clarivate merged with the Churchill Capital Corp SPAC to obtain a public listing on the New York Stock Exchange (NYSE) It currently trades with symbol NYSE:CLVT.

 

Acquisitions

  • June 1, 2017: Publons, a platform for researchers to share recognition for peer review.
  • April 10, 2018: Kopernio, AI-tech startup providing ability to search for full-text versions of selected scientific journal articles.
  • October 30, 2018: TrademarkVision, provider of Artificial Intelligence (AI) trademark research applications.
  • September 9, 2019: SequenceBase, provider of patent sequence information and search technology to the biotech, pharmaceutical and chemical industries.
  • December 2, 2019: Darts-ip, provider of case law data and analytics for intellectual property (IP) professionals.
  • January 17, 2020: Decision Resources Group (DRG), a leading healthcare research and consulting company, providing high-value healthcare industry analysis and insights.
  • June 22, 2020: CustomersFirst Now, in intellectual property (“IP”) software and tech-enabled services.
  • October 1, 2020: CPA Global, intellectual property (“IP”) software and tech-enabled services.
  • December 1, 2021: ProQuest, software, data and analytics provider to academic, research and national institutions.[27]It was acquired for $5.3 billion from Cambridge Information Group in what was described as a “huge deal in the library and information publishing world”. The company said that the operational concept behind the acquisition was integrating ProQuest’s products and applications with Web of Science. Chairman of ProQuest Andy Snyder became the vice chairman of Clarivate. The Scholarly Publishing and Academic Resources Coalition, an advocacy group for open access to scholarship, voiced antitrust concerns. The acquisition had been delayed mid-year due to a Federal Trade Commission antitrust probe.

Divestments

 

How Clarivate Has Changed Since 2019

2019 Strategy

From 2019 Manager Discussion Yearly Report

We are a leading global information services and analytics company serving the scientific research, intellectual property and life sciences end-markets. We provide structured information and analytics to facilitate the discovery, protection and commercialization of scientific research, innovations and brands.  Our product porfolio includes well-established market-leading brands such as Web of Science, Derwent Innovation, Life Sciences, CompuMark and MarkMonitor (which they later divested).  We believe that the stron balue proposition of our content, user interfaces, visualization and analytical tools, combined with the integration of our products and services into customers’ daily workflows, leads to our substantial customer loyalty as evidenced by their willingness to renew subscriptions with us.

Our structure, enabling a sharp focus on cross-selling opportunities within markets, is comprised of two product groups:

  • Science Group: consists of Web of Science and Life Science Product Lines
  • Intellectual Property Group: consists of Derwent, CompuMark and MarkMonitor

Corporations, government agencies, universities, law firms depend on our high-value curated content, analytics and services.  Unstructured data has grown exponentially over the last decade.  The trend has resulted in a critical need for unstructured data to be meaningfully filtered, analyzed and curated into relvent information that facilitates key operational and strategic decision making.  Our highly curated, proprietary information created through our sourcing, aggregation, verification, translation, and categorization (ONTOLOGY) of data has resulted in our solutions being embedded in our customers’ workflow and decision-making processes.

Overview of Clarivate PLC five year strategy in 2019. Note that in 2019 the Science Group accounted for 56.2% of revenue! This was driven by their product Cortellis!

 

Figure.  Overview of Clarivate PLC five year strategy in 2019. Note that in 2019 the Science Group accounted for 56.2% of revenue! This was driven by their product Cortellis!

Also Note nowhere in the M&A Discussion in years before 2023 was anything mentioned concerning AI or Large Language Models.

 

The Clarivate of Today:  Built for Life Sciences with Cortellis

Clarivate PLC has integrated multiple platforms into their offering Cortellis, which integrated AI and LLM into the structured knowledge bases (see more at https://clarivate.com/products/cortellis-family/)

“Life sciences organizations are tasked, now more than ever, to discover and develop treatments that challenge the status quo, increase ROI, and improve patient lives. However, its become increasingly difficult to find, integrate and analyze the key data your teams need to make critical decisions and get your Cortellis products to patients faster.

The Cortellis solutions help research and developmentportfolio strategy and business development, and regulatory and compliance professionals gather and assess the information you need to discover innovative drugs, differentiate your treatments, and increase chances of successful regulatory approval.

Some of Cortellis solutions include:

  1. Cortellis Competitive Intelligence: maximize ROI and improve patient outcomes
  2. Cortellis Deals Intelligence: Portfolio Strategy and Business Development (find best deal)
  3. Cortellis Clinical Intelligence: Clinical Trial Support and Regulatory
  4. Cortellis Digital Health Intelligence: understand digital health ecosystem
  5. Cortellis Drug Discovery: improve drug development speed and efficiency
  6. MetaBase and MetaCore: integrated omics knowledge bases for drug discovery
  7. Cortellis Regulatory: help with filings
  8. Cortellis HTA: health tech compliance (HIPAA)
  9. CMC Intelligence: new drug marketing
  10. Generics Intelligence
  11. Drug Safety Intelligence: both preclinical safety and post marketing pharmacovigilence

 

 

Watch Videos on Cortellis for Drug Discovery

 

 

 

Watch Video on Qiagen Site to see how Cortellis Integrates with Qiagen Omics Platform IPA with Clarivate Meta Core to gain more insights into genomic and proteomic data

https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/?cmpid=QDI_GA_Comp&gad_source=2&gclid=EAIaIQobChMIwu6HtvHGhQMVnZ9aBR1iCgHTEAEYASAAEgJiWPD_BwE

From the Qiagen website on Ingenuity Pathway Analysis: https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/ 

Understand complex ‘omics data to accelerate your research

Discover why QIAGEN Ingenuity Pathway Analysis (IPA) is the leading pathway analysis application among the life science research community and is cited in tens of thousands of articles for the analysis, integration and interpretation of data derived from ‘omics experiments. Such experiments include:

  • RNA-seq
  • Small RNA-seq
  • Metabolomics
  • Proteomics
  • Microarrays including miRNA and SNP
  • Small-scale experiments

With QIAGEN IPA you can predict downstream effects and identify new targets or candidate biomarkers. QIAGEN Ingenuity Pathway Analysis helps you perform insightful data analysis and interpretation to understand your experimental results within the context of various biological systems.

 

Articles Relevant to Drug Development, Natural Language Processing in Drug Development, and Clarivate on this Open Access Scientific Journal Include:

The Use of ChatGPT in the World of BioInformatics and Cancer Research and Development of BioGPT by MIT

 

From High-Throughput Assay to Systems Biology: New Tools for Drug Discovery

 

Medical Startups – Artificial Intelligence (AI) Startups in Healthcare

 

New York Academy of Sciences Symposium: The New Wave of AI in Healthcare 2024. May 1-2, 2024 New York City, NY

 

Clarivate Analytics – a Powerhouse in IP assets and in Pharmaceuticals Informercials

 

Live Notes from JP Morgan Healthcare Conference Virtual Endpoints Preview: January 8-9 2024

Reporter: Stephen J. Williams, Ph.D.

Endpoints at #JPM24 | Primed to unlock biopharma’s next dealmaking wave
Endpoints at JP Morgan Healthcare Conference
January 8-9 | San Francisco, CA80 Mission St, San Francisco, CA

An oasis has emerged in the biopharma money desert as backers look to replenish capital — still, uncertainty remains on whether it’s a mirage or the much needed dealmaking bump the industry needs. Yet spirits run high as JPM24 marks the triumphant return of inking strategic alliances and peering into the industry crystal ball — while keeping an eye out for some major M&A.

We’re back live from San Francisco for JPM Monday and Tuesday — our calendar of can’t-miss panels and fireside chats will feature prominent biopharma leaders to watch. The Endpoints Hub provides the ultimate coworking space with everything you need — 1:1 and group meeting spots plus guest pass capabilities and more. Join us in-person at the Endpoints Hub or watch online to stay plugged into all the action.

8 JAN
Welcome remarks
8:05 AM – 8:25 AM PST
Pfizer vet Mikael Dolsten has some thoughts on Big Pharma R&D

Endpoints News founding editor John Carroll will sit down with longtime Pfizer CSO Mikael Dolsten to talk about Pfizer’s pipeline, what he’s learned on the job about preclinical research and development and what’s ahead for the pharma giant in drug development and deals.

Mikael Dolsten

Chief Scientific Officer, President, Pfizer Research & Development

Pfizer

Pfizer Mikael Dolsten: Pfizer produced a series of AI generated molecules with new properties. Sees rapid adoption of AI in the area of drug discovery and molecular design.

 
 
8:25 AM – 9:05 AM PST
What pharma wants: The industry’s dealmakers look ahead at 2024

The drug industry’s appetite for new assets hasn’t slowed down. Top business development execs will give their outlook on the year, what they’re looking for and how they see the market.

Glenn Hunzinger

Pharmaceutical & Life Sciences Consulting Solutions Leader

PwC US

Rachna Khosla

SVP, Head of Business Development

Amgen

James Sabry

Global Head of Pharma Partnering

Roche

Devang Bhuva

SVP, Corporate Development

Gilead Sciences, Inc.

Endpoints News

Dealmaking panel

Glenn Hunzinger: if you do not have a GLP1 will have a tough time getting a good market price for your company; capital markets are not where they want to be; sees a tough deal making climate like last year.  The problem with many biotech companies are they are coming earlier to the venture capital because of greater funding needs and so it is imperative that they articulate the potential of their company in scientific detail

Rachna Khosla:  Make sure your investors are not just CAPITAL PARTNERS but use their expertise and involve them in development issues you may have, especially ones that a young firm will face.  The problem is most investments assume what the future looks like (for example how antibody drug conjugates, once a field left for dead, has been rejuvenated because of advances in chemistry). 

James Sabry: noted that cardiac and metabolic drugs are now at the focus of many investors, especially with the new anti-obesity drugs on market

Devang Bhuva: Most deals we see start as collaborations or partnerships.  You want to involve an alliance management team early in the deal making process.  This process could take years.

 
9:05 AM – 9:20 AM PST
The IPO: How Apogee Therapeutics went public in the most challenging market in years

Not many biotechs went public in 2023. And of those that did, not many have had a great time of it. Apogee is the exception and our panel will offer a behind-the-scenes look at their decision to enter the market and what life is like as a young public company.

Michael Henderson

CEO

Apogee Therapeutics

Kyle LaHucik

MODERATOR

Senior Reporter

Endpoints News

Michael Henderson:  Not many biotech IPOs deals happened in 2023.  Michael feels it is because too many biotechs focused on building platforms, which was a hard sell in 2023.  He felt not many biotechs had clear milestones and investors wanted a clear primary validated target.  He said many biotech startups are in a funding crunch and most need at least $440M on their balance sheet to get to 2026.

9:50 AM – 10:10 AM PST
Top predictions for biotech in 2024

Catalent CEO Alessandro Maselli will be back at the big JPM healthcare confab to talk with Endpoints News founder John Carroll about their top predictions of what’s coming up for the biotech industry in 2024. The stakes couldn’t be higher as the industry grapples with headwinds and new opportunities in a gale of market forces. Two top observers share their thoughts on the year ahead.

Alessandro Maselli

President & CEO

Catalent

10:15 AM – 10:35 AM PST
Innovation at a crossroads: Keys to unlocking the value of science and technology

The industry has long discussed the promise of technology and the acceleration it provides in scientific advancement and across the industry value chain. However, the promise of its impact has yet to fully be realized. This discussion will outline the keys to unleashing this promise and the implications and actions to be taken by the biopharmaceutical companies across the industry.

Ray Pressburger

North America Life Sciences Industry Lead & Global Life Sciences Strategy Lead

Accenture

SPONSORED BY

10:35 AM – 11:05 AM PST
Activism and Investing: In conversation with Elliott Investment Management’s Marc Steinberg

Elliott has been behind many of 2023’s highest-profile healthcare investments, including multiple activist engagements and taking Syneos Health private. What has made large healthcare companies such interesting investment opportunities for firms like Elliott? What’s Elliott’s investing strategy in healthcare? And what should companies expect when an activist calls?

Marc Steinberg

Senior Portfolio Manager

Elliott Investment Management

Andrew Dunn

MODERATOR

Biopharma Correspondent

Endpoints News

11:05 AM – 11:35 AM PST
Creating ROI from AI

AI is predicted to transform the way drugs are made, from discovery to clinical trials to market. But beyond the initial hype and early adoption, where has AI made meaningful contributions to R&D? How does it help drug developers advance science? Endpoints publisher Arsalan Arif is convening a panel of leading experts to discuss the state of AI in the pharmaceutical landscape and the outlook for 2024. How does AI impact the drug pipeline, from the early steps of discovery to reducing trial failure rate?

Thomas Clozel

Co-Founder & CEO

Owkin

Venkat Sethuraman

SVP, Global Biometrics & Data Sciences

Bristol Myers Squibb

Frank O. Nestle

Global Head of Research & Chief Scientific Officer

Sanofi

Matthias Evers

Chief Business Officer

Evotec

Arsalan Arif

MODERATOR

Founder & Publisher

Endpoints News

SPONSORED BY

11:35 AM – 12:00 PM PST
Biopharma’s dealmaker: Behind the scenes with Centerview Partners co-president Eric Tokat

Almost every major biopharma deal in 2023 had Centerview’s name attached to it. And much of the time, Eric Tokat was the banker making those deals happen. Hear his outlook for 2024, how transactions are getting done and what’s placed his firm at the center of so much action.

E. Eric Tokat

Co-President, Investment Banking

Centerview Partners

CenterView Partners Eric Tokat feels dealmaking will improve in 2024, given the recent flurry of dealmaking at end of last year and right before main JPM Healthcare Conference.  He says Centerview wants to help the biotechs they invest in on their strategic path.  This may translate into buyers more actively involved (more than startups want) and buyers now are in the drivers seat as far as the timeline of deals and development.

Is the megamerger dead for this year?  He says it is very hard to see two major mergers happening but there will be many smaller and mid size biotech deals happening, but these deals will be more speculative in nature..  The focus for large pharma is top line growth.  Most of the buyers have an infrastructure and value is more of buying and dropping it in their business so there is now a huge emphasis on due diligence on whether synergies exist or not

 
12:00 PM – 12:30 PM PST
Founder, legend, leader: In conversation with Nobel laureate Carolyn Bertozzi

Carolyn Bertozzi’s discoveries around bioorthogonal chemistry won the Nobel Prize in Chemistry in 2022 and are at the heart of new therapies being tested in patients. Join us as we discuss what inspires her and where she sees the next big advances.

Carolyn Bertozzi

Prof. of Chemistry, Stanford University and Baker Family Director of Sarafan ChEM-H

Stanford University

Nicole DeFeudis

MODERATOR

Editor

Endpoints News

Bioorthogonal chemistry: class of high yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions toward endogenous functions.  This is also a type of ‘click chemistry’ in biological system where only specifically alter the biomolecule of interest.

Orthogonal: two chemicals not interacting with each other

Dr. Bertozzi noted she has started a new Antibody-Drug-Conjugate (ADC) company which involves designing with biorthogonal chemistry to make new functional molecules with varying properties

She noted hardly any biologists knew anything about glycobiology when she first started.  However now she feels pharma and academia are working very well with each other

Bioorthogonal and Click Chemistry
Curated by Prof. Carolyn R. Bertozzi, 2022 winner of the Nobel Prize in Chemistry

Source: https://pubs.acs.org/page/vi/bioorthogonal-click-chemistry

The 2022 Nobel Prize in Chemistry has been awarded jointly to ACS Central Science Editor-in-Chief, Carolyn R. Bertozzi of Stanford University, Morten Meldal of the University of Copenhagen, and K. Barry Sharpless of Scripps Research, for the development of click chemistry and bioorthogonal chemistry.

To celebrate this remarkable achievement, 2022 Nobel Prize winner Professor Carolyn R. Bertozzi has curated this Bioorthogonal and Click Chemistry Virtual Issue, highlighting papers published across ACS journals that have built upon the foundational work in this exciting area of chemistry.

From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions

Ellen M. Sletten and Carolyn R. Bertozzi* Acc. Chem. Res. 2011, 44, 9, 666-676 August 15, 2011

Abstract

Bioorthogonal reactions are chemical reactions that neither interact with nor interfere with a biological system. The participating functional groups must be inert to biological moieties, must selectively reactive with each other under biocompatible conditions, and, for in vivo applications, must be nontoxic to cells and organisms. Additionally, it is helpful if one reactive group is small and therefore minimally perturbing of a biomolecule into which it has been introduced either chemically or biosynthetically. Examples from the past decade suggest that a promising strategy for bioorthogonal reaction development begins with an analysis of functional group and reactivity space outside those defined by nature. Issues such as stability of reactants and products (particularly in water), kinetics, and unwanted side reactivity with biofunctionalities must be addressed, ideally guided by detailed mechanistic studies. Finally, the reaction must be tested in a variety of environments, escalating from aqueous media to biomolecule solutions to cultured cells and, for the most optimized transformations, to live organisms.

9 JAN

9:40 AM – 10:10 AM PST

Biotech downturn survival school

Our panelists have seen the worst, and made it through to the other side. Join us for downturn survival school as our panelists talk about what sets apart the ones who make it through tough times.

These panalists think it will be specialist capital year to shine while the general capital is still sitting on the sidelines

JJ Kang

CEO

Appia Bio

“2023 was a tough year while 2020 was a boon year to start a company.  We will continue to see these cycles; many of these new CEOs have never seen a biotech downturn yet and may not know how to preserve capital for the downturn”.

“Doing a partnership with Kite Pharmaceuticals early in our startp allowed us to get work done without risking a lot of capital, even if it means equity and asset dilution.  That makes sense. However even if you are small insist on being an equal partner.”

“There are many investors we talk to who do not want to invest in cell therapy.  Too risky now”

Carl Gordon

Managing Partner

OrbiMed Advisors

There are many macroeconomic factors affecting investment and capital today which will carry on through 2024.   Not raising money when you do not need money is a bad philosophy.  Always bbe raising captial.  This is especially true when you have to rely on hedge funds.  Parnerships howeve are sometimes the only way for small biotechs to leverage their strengths.

Joshua Boger

Executive Chair

Alkeus Pharmaceuticals, Inc.

Boger: Expect volatility for 2024.  This environment feels very different than past downturns.

Even in downturns there is still lots of capital; remember access to human capital is better in a downturn and is easier to access;  however it has become harder to get drug approvals

The panelists agree that access to capital and funding will be as tricky in 2024 than 2023.  They did

suggest that a new funding avenue, private credit, may be a source of capital.  This is discussed below:

When thinking about a private alternative investment asset class, the first thing that springs to mind is private equity. But there’s one more asset class with the word private in its name that has recently gained much attention. We’re talking about private credit

Indeed, this once little-known investment strategy is now growing rapidly in popularity, offering private investors worldwide an exciting opportunity to diversify their portfolio with, in theory, less risky investments that yield significant returns. 

  • Private credit investments refer to investors lending money to companies who then repay the loan at a given interest rate within the predetermined period.
  • The private credit market has grown significantly over the past years, rising from $875 million in 2020 to $1.4 trillion at the beginning of 2023. 

Please WATCH VIDEO BY GOLDMAN SACHS ON PRIVATE CREDIT

 

 

 

 

10:50 AM – 11:20 AM PST

The New Molecule: How breakthrough technologies are actually changing pharma R&D

Join us for a look at how AI, machine learning and generative technologies are actually being applied inside drugmakers’ labs. We’ll explore how new technologies are being used, their implications, how they intersect with regulatory and IP issues and how this fast-changing field is likely to evolve.

Kailash Swarna

Managing Director & Global Life Sciences Clinical Development Lead

Accenture

Artificial Intelligence is making impact in a grand way on biology in three aspects:

  1. Speeding up target validation: now we can get through 300 molecules a day
  2. Predicition like AlphaFold is doing; molecular simulations
  3. Document submission especially with regulatory and IND submissions

Pamela Carroll

COO

Isomorphic Labs formerly of AlphaFold

We were first with Novartis at last year JPM and was one year old but parnering with them in that initial year was very important for sealing the deal.

They are looking now at neurologic diseases like ALS.  She wondered whether ALS is actually multiple diseases and we need to stratify patients like we do in oncology trials.  Their main competion is the whole tech world like Amazon, Google and other Machine Learning companies so being a tech player in the biotech world means you are not just competing with other biotechs but large tech companies as well.

Jorge Conde

General Partner

Andreessen Horowitz

Need is still great for drug discovery; early adopters show AI tools can be used in big pharma. There are lots of applications of AI in managing care; a lot of back office applications including patient triaging.  He does not see big AI mergers with pharma companies –  this will be mainly partnerships not M&A deals

Alicyn Campbell

Chief Scientific Officer

Evinova, a Healthtech Subsidiary of the AstraZeneca Group

There is a need to turn AI for real world example.  For example AI tools were used in clinical trials to determine patient cohorts with pneumonitis.  At Evinova they are determining how AI can hel[p show clinical benefit with respect to efficacy and safety

Joshua Boger at #JPM24 (Brian Benton Photography)

  January 12, 2024 09:06 AM ESTUpdated 10:00 AM PeopleStartups

Vertex founder Joshua Boger on surviving downturns, ‘painful’ partnerships, and the importance of culture: #JPM24

Andrew Dunn

Biopharma Correspondent

Source: https://endpts.com/jpm24-vertex-founder-joshua-boger-on-surviving-downturns-painful-partnerships-and-the-importance-of-culture/

While the JP Morgan Healthcare Conference was full of voices of measured optimism, rooting for the market to bounce back in 2024, one longtime biotech leader warned against setting any firm expectations.

Instead of predicting when the downturn may end, Vertex Pharmaceuticals founder Joshua Boger said he advises biotech leaders to expect — and plan for — volatility. Speaking Tuesday on an Endpoints News panel alongside OrbiMed’s Carl Gordon and Appia Bio CEO JJ Kang, Boger shared lessons learned on surviving downturns, striking pharma deals, and the importance of keeping a company’s culture based on his two decades of founding and leading Vertex as CEO from 1989 to 2009. The 72-year-old is now serving as executive chairman of Alkeus Pharmaceuticals, a startup developing a rare disease drug.

“I never experienced a straight line up,” Boger said. “Everything had its cycles, and it was how you respond to the cycle, not by predicting when the end is going to be, but just by responding to the present situation.”

At Boger’s first appearance at the JP Morgan conference in 1991, he said the conference’s theme was the end of biotech financing. Just a few months later, Regeneron successfully went public, rapidly changing the outlook for the whole field.

“We had no idea we were ever going to take public money,” he said. “When Regeneron did their IPO, we went, ‘Whoa, there’s something happening here,’ and we pivoted quickly.”

Vertex went public later that year. Throughout his 20-year tenure, Boger said no pharma company ever made an acquisition offer for Vertex, which now commands a market value of $110 billion and recently won the first FDA approval for a CRISPR gene editing therapy.

“We had an uber corporate policy to always make ourselves more expensive than anyone would stomach,” Boger said.

However, Vertex did strike a range of partnerships with Big Pharmas, which Boger described as a painful but necessary part of running a biotech startup.

“It’s impossible for a partnership not to slow you down,” he said. “You can and should try as hard as you can not to do that, but just count on it. They’ll slow you down.”

Boger said startups should insist on being equal partners in pharma deals, at least making sure they have a seat at a partner’s development meetings.

“Realize they’re going to be painful, it’s going to be horrible, and you need to do it,” Boger said.

While Vertex suffered through layoffs, stock price plunges, and trial failures, Boger credited a focus on culture as key to its long-term success.

“It’s the most important ingredient for a successful company,” he said. “Technology is acquirable. Culture is not acquirable. There are 10 companies that will fail because of culture for every one that succeeds, and the successful companies in retrospect will almost always have special cultural aspects that kept them through those downtimes.”

JPM24 opens with ADCs the hottest ticket in San Francisco

By Annalee ArmstrongJan 8, 2024 6:30am

Source: https://www.fiercebiotech.com/biotech/jpm24-opens-adcs-hottest-ticket-san-francisco

The overall deal flow in biopharma tapered off in 2023 but the big companies sure know what they want (what they really, really want), according to a new report from J.P. Morgan.

And that’s antibody-drug conjugates, which drove a fourth-quarter spike in licensing deal proceeds and provided a glimmer of hope to an industry battered by outside forces and grim financing prospects.

J.P. Morgan’s annual 2023 Biopharma Licensing and Venture Report arrived on the eve of the firm’s famous conference, which is set to welcome thousands of attendees in San Francisco today—East Coast weather permitting.

2023 was tough, but clinical biotechs still had a lot of opportunities to wheel and deal, according to J.P. Morgan. While licensing deals, venture investments, M&A and IPOs were down overall in the fourth quarter, deal values stayed fairly high thanks to a flurry of late-stage tie ups.

Follow the Fierce team’s coverage of the 2024 J.P. Morgan Healthcare Conference here

Biopharma licensing partnerships accounted for $63 billion in total value during the fourth quarter from 108 deals. Just one deal—Merck’s ADC partnership with Daiichi Sankyo—accounted for $22 billion of that. Another huge one was another ADC bet, with Bristol Myers Squibb signing on to work with SystImmune for a total value of $8.4 billion. If you exclude the Merck deal, the total value of these partnerships is still higher than the previous quarter, which ended with $32.1 billion.

The total number of licensing deals compares to 149 in the same quarter a year earlier, 195 for Q4 2021 and 223 for Q4 2022.

As for venture investments, the year closed out with $17 billion total across 250 rounds, thanks to $3.5 billion earned through 79 rounds in the last quarter. Aiolos Bio snagged the title of largest venture round of the quarter with $245 million, which also proved to be the largest series A, too.

There was just one IPO in all of the fourth quarter—Cargo Therapeutics making the plunge for $300 million—and 13 overall for the year. It’s a far cry from the heyday of 2021 and experts are still unsure what 2024 will hold. J.P. Morgan reported $2.5 billion raised from 12 completed biopharma IPOs for the year on Nasdaq and NYSE. Nine out of the 12 companies had clinical programs when they took the leap to the public markets. As of December 13, five of the companies were trading above their IPO price.

As for M&A, December saw a rush of Big Pharmas snapping up companies around Christmas. J.P. Morgan tallied the fourth quarter at $37.6 billion and $128.8 billion across 112 total acquisitions for all of 2023.

AbbVie was the top buyer of the quarter with the two largest acquisitions thanks to the $10 billion outlay for ImmunoGen and $8.7 billion buy of Cerevel Therapeutics.

All of this adds up to 270 total deals in the fourth quarter total, which is lower than the third quarter which exceeded 300.

J.P. Morgan sees some big potential for smaller biopharmas looking for licensing partners, as Big Pharmas have been handing out larger upfront payments for the deals they really want.

Cancer was once again the most in-demand therapeutic areas, reaching a new height of $86.1 billion in 2023. Followed by $21.1 billion for neurological disorders.

For More Articles on Real Time Conference Coverage in this Open Access Scientific Journal see:

Part One: The Process of Real Time Coverage using Social Media

Part Two: List of BioTech Conferences 2013 to Present

https://worldmedicalinnovation.org/

https://pharmaceuticalintelligence.com/2022/05/01/2022-world-medical-innovation-forum-gene-cell-therapy-may-2-4-2022-boston-in-person/

 

https://event.technologyreview.com/emtech-digital-2022/agenda-overview

 

The Future of AI in Cardiology

Reporter: Arav Gandhi, Research Assistant 2, Domain Content: Cardiovascular Diseases, Series A

 

AI, also known as artificial intelligence, has not only taken over the objectives of major technology giants such as Google and Microsoft, but also introduced itself to many fields, one of which being the medical field. Several advancements have been made to improve the way medical professionals view patients and their ability to see beyond their own perspective. One such field within medicine that has been primarily transformed is cardiology.

Cardiology is a branch of medicine dealing with all diseases and possible abnormalities found within the heart. For a medical professional, it can be viewed as a stressful occupation dependent on making the right diagnosis at the right time while a patient may view it as one of “the most unsettling moments” of their life hoping to receive the right treatment. But what if the pressure and uncertainty of cardiologists could be reduced? This is where artificial intelligence comes into play. Common medical devices such as ECGs to CT scans can be used to an extent beyond the capability of the human mind. With artificial intelligence, it can capture invaluable data with concepts such as machine learning geared to develop more accurate diagnostics as it receives more data. This not only improves the ability to which clinicians can understand the results of a test, but improve overall patient care: the most critical aspect of medicine. There are several examples by which artificial intelligence aids cardiologists.

If a patient is found with heart palpitations, chest pain or any other cardiac symptoms, an accurate diagnosis with respect to time is of the essence. Although technologies such as portable ultrasounds output results and observations, it is the smart use of data generated that allows for a significant decrease in uncertainty than before. Artificial intelligence is able to automate such measurements and interpretations complexifying the data to reveal much more beyond the human mind. For instance, a 3D CT angiography can show coronary stenosis and a cardiac MRI can show the downstream effect. By implementing artificial intelligence, it can interpret both results in relation to each other to develop a diagnosis and allow cardiologists to understand the patient beyond their own intuition. Not only does artificial intelligence play an important role in interpretation of results, but also in treatment.

After the diagnosis of the patient, there must be a treatment plan optimized to efficiency of time and risk tailored to the patient itself. Artificial intelligence showcases its true power of precision when subject to the cases of patients affected by disease. For instance, through guided imaging solutions such as X-ray, AI is able to explore all possible procedures from minimally invasive to complex methods. Moreover, it even allows clinicians to understand the full perspective of the procedure and determine the best possible tools to use. Yet, AI proves to be helpful beyond the operation room.

With AI, it can reduce clinician and patient exposure to radiation while still obtaining an optimal image quality. Not only has it contributed to safety, but AI has allowed for a better understanding of patient flow and issue real-time notifications so clinicians can prioritize which patients need their attention. With the cardiology department constantly going through issues throughout a day, AI can help reduce this and ease the stress at which the clinicians go through.

Although many fear that artificial intelligence may replace clinicians entirely, this is merely a misconception by which clinicians rather can use artificial intelligence to improve their own view of a patient. Not only does this improve access to quality care, but it also gives those in the field of medicine a piece of mind knowing that they are able to consider all possibilities before developing treatment on a patient.

To learn more about the topic, check out the article below.

SOURCE

“Can AI Transform Cardiology?” GE HealthCare, GE, 2 Feb. 2022, http://www.gehealthcare.com/insights/article/can-ai-transform-cardiology?utm_campaign=USC-NU-HCD-CRD-Cardiology-Innovation.

Overview of Alzheimer’s Disease and Novel Treatments Targeting Beta-Amyloid Deposits

Reporter: Sharada Kittur, Research Assistant 1, Synthetic Biology in Drug Discovery

 

Alzheimer’s disease (AD) is a common type of dementia. People diagnosed with this disease suffer memory loss. Severe forms of the condition prevent the patients from responding to the environment. Alzheimer’s disease patients may also experience difficulty completing basic tasks, decreased or poor judgement as their executive function competence declines. Frequent changes in mood, personality, or behavior. AD is the 7th leading cause of death in the United States, and the 5th leading cause of death for adults aged 65 and over. Unlike cancer and heart disease, whose death rates are declining, the number of people struggling with Alzheimer’s disease is projected to increase in the coming years.  

Currently, there are no cures for the disease. Many of the drugs on the market target only symptoms of the disease. The key mechanism of action (MOA) of AD drugs is inhibiting acetylcholinesterase. Acetylcholinesterase (AChE) is an enzyme that breaks down a neurotransmitter called acetylcholine (Ach), which is an important factor for memory functions. On average, Alzheimer’s disease patients have lower concentrations of acetylcholine. In order to treat this biomarker, scientists found molecules that can inhibit AChE, and reduce the breakdown of acetylcholine, thus improving the memory of patients with Alzheimer’s disease by enabling average levels of Ach. Some examples of AChE inhibitors currently on the market are

  • donepezil,
  • rivastigmine, and
  • galantamine. 

One of the main causes of Alzheimer’s disease is believed to be the buildup of beta-amyloid plaques in the brain. Beta-amyloid is a toxic protein that is normally produced in small amounts in the brain. Then microglia, a type of macrophages in the nervous system, clear out the beta-amyloid deposits. In patients with Alzheimer’s disease, the microglia can’t clear away the beta-amyloid, and this obstructs neural function and attacks neurons. The cause of the microglia’s malfunction is still unknown, but it could be due to a gene called TREM2, that tells the microglia to clear the beta-amyloid proteins. When TREM2 doesn’t function properly, the microglia collects all of the beta-amyloid, but isn’t able to dispose of it. It then releases inflammatory chemicals, which increase the production of the amyloid precursor protein (APP). This also increases the production of β-secretase and γ-secretase, enzymes that form beta-amyloid by breaking down APP. This further exacerbates the problem. 

On July 06, 2023, the Food and Drug Administration (FDA) fully approved Leqembi (lecanemab-irmb) to treat Alzheimer’s disease. Leqembi is a monoclonal antibody that specifically targets beta-amyloid proteins in the brain. It binds to the beta-amyloid proteins and clears them. This is very promising as in placebo-controlled clinical trials, it significantly decreased the beta-amyloid deposits in 18 months, and delayed cognitive decline by 5.3 months. It’s the first beta-amyloid targeting drug that was approved by the FDA as a Traditional Approval. 

Leqembi is not a cure, however. It significantly slows down the mental function deterioration of the patients, but hasn’t been shown to fully maintain it at the current level over time. In addition, Leqembi has many side effects, such as headaches, and presents amyloid-related imaging abnormalities (ARIAs). ARIAs can cause swelling and bleeding in parts of the brain, but they should be temporary for most patients. Severe ARIAs only occur in a very small percentage of patients. 

As researchers make progress in understanding the complex causes of Alzheimer’s disease, new treatments that are developed can help improve the lives of millions of people worldwide. 

SOURCES:

“Alzheimer’s Association Welcomes U.S. FDA Traditional Approval of Leqembi: Full Details.” Alzheimer’s Disease and Dementia, Alzheimer’s Association, 6 July 2023, www.alz.org/news/2023/lecanemab-leqembi-traditional-fda-approval-full#:~:text=CHICAGO%2C%20July%206%2C%202023%20%E2%80%94,confirmation%20of%20elevated%20amyloid%20beta.

Smith, Tyler. “How Well Does Leqembi Work to Fight Alzheimer’s? First FDA-Approved Alzheimer’s Drug Offers Both Promise and Challenges.” UCHealth Today, 11 Aug. 2023, www.uchealth.org/today/how-well-does-leqembi-fight-alzheimers-first-fda-approved-alzheimers-drug/

Wang, Shaoxun, et al. “Is Beta-Amyloid Accumulation a Cause or Consequence of Alzheimer’s Disease?” Journal of Alzheimer’s Parkinsonism & Dementia, U.S. National Library of Medicine, 17 Nov. 2016, www.ncbi.nlm.nih.gov/pmc/articles/PMC5555607/

“What Happens to the Brain in Alzheimer’s Disease?” National Institute on Aging, U.S. Department of Health and Human Services, 16 May 2017, www.nia.nih.gov/health/what-happens-brain-alzheimers-disease#:~:text=In%20a%20person%20with%20Alzheimer’s,beta%2Damyloid%20and%20tau%20proteins.

“What Is Alzheimer’s Disease?” Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, 26 Oct. 2020, www.cdc.gov/aging/aginginfo/alzheimers.htm#:~:text=Alzheimer’s%20disease%20is%20the%20most,thought%2C%20memory%2C%20and%20language.

 

Other related articles published in this Open Access Online Scientific Journal include the following:

Alzheimer’s Disease: Novel Therapeutical Approaches — Articles of Note @PharmaceuticalIntelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/04/05/alzheimers-disease-novel-therapeutical-approaches-articles-of-note-pharmaceuticalintelligence-com/

Role of infectious agent in Alzheimer’s Disease?

Alzheimer’s disease, snake venome, amyloid and transthyretin

Alzheimer’s Disease – tau art thou, or amyloid

Breakthrough Prize for Alzheimer’s Disease 2016

Tau and IGF1 in Alzheimer’s Disease

Amyloid and Alzheimer’s Disease

Important Lead in Alzheimer’s Disease Model

BWH Researchers: Genetic Variations can Influence Immune Cell Function: Risk Factors for Alzheimer’s Disease,DM, and MS later in life

BACE1 Inhibition role played in the underlying Pathology of Alzheimer’s Disease

Late Onset of Alzheimer’s Disease and One-carbon Metabolism

Alzheimer’s Disease Conundrum – Are We Near the End of the Puzzle?

Ustekinumab New Drug Therapy for Cognitive Decline resulting from Neuroinflammatory Cytokine Signaling and Alzheimer’s Disease

New Alzheimer’s Protein – AICD

Developer of Alzheimer’s drug Exelon at Hebrew University’s School of Pharmacy: Israel Prize in Medicine awarded to Prof. Marta Weinstock-Rosin

TyrNovo’s Novel and Unique Compound, named NT219, selectively Inhibits the process of Aging and Neurodegenerative Diseases, without affecting Lifespan

@NIH – Discovery of Causal Gene Mutation Responsible for two Dissimilar Neurological diseases: Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD)

Introduction to Nanotechnology and Alzheimer disease

Genomic Promise for Neurodegenerative Diseases, Dementias, Autism Spectrum, Schizophrenia, and Serious Depression

New ADNI Project to Perform Whole-genome Sequencing of Alzheimer’s Patients,

Brain Biobank

Removing Alzheimer plaques

Tracking protein expression

Schizophrenia genomics

Breakup of amyloid plaques

Mindful Discoveries

Beyond tau and amyloid

Serum Folate and Homocysteine, Mood Disorders, and Aging

Long Term Memory and Prions

Retromer in neurological disorders

Neurovascular pathways to neurodegeneration

Studying Alzheimer’s biomarkers in Down syndrome

Amyloid-Targeting Immunotherapy Targeting Neuropathologies with GSK33 Inhibitor

Brain Science

Sleep quality, amyloid and cognitive decline

microglia and brain maintenance

Notable Papers in Neurosciences

New Molecules to reduce Alzheimer’s and Dementia risk in Diabetic patients

The Alzheimer Scene around the Web

MRI Cortical Thickness Biomarker Predicts AD-like CSF and Cognitive Decline in Normal Adults

 

Keywords:

  • Alzheimer’s disease
  • microglia
  • gliosis
  • neurodegeneration
  • inflammation

 

The Implications and Association of Stair Climbing with Atherosclerotic Cardiovascular Disease (ASCVD)

Reporter: Arav Gandhi, Research Assistant 2, Domain Content: Cardiovascular Diseases, Series A

 

Atherosclerotic Cardiovascular Disease (ASCVD) is a condition in which cholesterol builds up in the arteries to an extent that develops long-term complications for other areas of the body and in some cases emergence of symptoms such as chest pain, dizziness, and shortness of breath are presented and reported to PCPs. This can cause a strain on daily activities such as walking and especially may be noticed when climbing stairs which represents a form of exertion related to elevation. To further understand the significance of ASCVD upon daily activities, Zimin Song et al. (2023), using a sample of 458,860 participants (55.9% female) from the UK Biobank, aimed to evaluate the intensity of stair climbing and the present risk of ASCVD. All participants had a history of ASCVD, put at risk for ASCVD, or had a recorded levels of genetic risk.

Prior to the study, all participants underwent blood tests and other necessary measurements. During the study, the researchers assessed the intensity of stair climbing through a self-reported structure in which participants were asked a set of questions addressing the duration of climbing stairs and whether they continued to climb. Additional questionnaires were administered to collect sociodemographic characteristics, lifestyle factors, and health status. Following the conclusion of the study, the researchers found, with an application of statistical analysis, that over a period of 12.5 years individuals with a higher intensity of stair climbing were of younger age, female, and non-regular smokers. Moreover, those individuals exemplified a higher level of education and income along with healthier dietary habits and prolonged exercise durations. Beyond demographic characteristics, researchers found that when individuals especially those with a family history of ASCVD increased the intensity of stair climbing, the risk of ASCVD was reduced. This remained consistent across other groups of participants finding an association between the intensity of stair climbing and the risk of ASCVD.

Ultimately, given the large sample of UK adults, the findings conclude that high-intensity climbing, or climbing more than five flights of stairs daily was associated with over a 20% reduction in risk of obtaining ASCVD. Despite the variance of disease tendencies among individuals, active engagement in stair climbing can significantly reduce the risk of ASCVD in contrast to those who discontinued stair climbing leading to a higher risk of ASCVD. However, the intensity of stair climbing was limited to a threshold in which it no longer decreased the risk of ASCVD.

Simply climbing stairs can be considered a prevention strategy for ASCVD, but the application of active engagement in physical activities may be associated with reducing the risk of obtaining other diseases. For instance, the positive effects of stair climbing on reducing the risk of ASCVD may also apply to

  • atrial fibrillation,
  • diabetes, and
  • hypertension.

Other existing studies find associations with a

  • lower risk of metabolic syndrome, and even
  • mortality.

In contrast to structured sports and exercise, stair climbing proves to be an effective method with minimal equipment and low cost that allows an individual to practice cardiorespiratory fitness reducing the risks of various diseases while improving their overall standard of life. Although further studies need to be conducted on the extent to which intense stair climbing improves different areas of the body and what diseases it helps prevent, current studies prove the effects of stair climbing to be beneficial to an extent in which individuals should be encouraged in incorporate it in their daily routine yielding both short-term and long-term benefits.

To learn more about the topic, check out the article below.

SOURCE

Song Z, Wan L, Wang W, et al. Daily stair climbing, disease susceptibility, and risk of atherosclerotic cardiovascular disease: A prospective cohort study. Atherosclerosis. 2023:117300. doi: 10.1016/j.atherosclerosis.2023.117300

 

Other related articles published in this Open Access Online Scientific Journal include the following:

Archive for the ‘Atherogenic Processes & Pathology’ Category

N =178 articles


Series A: e-Books on Cardiovascular Diseases
 

Series A Content Consultant: Justin D Pearlman, MD, PhD, FACC

 

VOLUME THREE

Etiologies of Cardiovascular Diseases:

Epigenetics, Genetics and Genomics

 

http://www.amazon.com/dp/B018PNHJ84

 

by  

Larry H Bernstein, MD, FCAP, Senior Editor, Author and Curator

and

Aviva Lev-Ari, PhD, RN, Editor and Curator

 

2.1.3 Physical Activity and Prevention of Cardiovascular Diseases

  • Causes
  • Biomarkrs
  • Therapies

2.1.3.1  In Two-thirds of Waking Hours Older Women are Sedentary

Aviva Lev-Ari, PhD, RN

2.1.3.2 Walking and Running: Similar Risk Reductions for Hypertension, Hypercholesterolemia, DM, and possibly CAD

Aviva Lev-Ari, PhD, RN

2.1.3.3 Cardiac Arrhythmias: A Risk for Extreme Performance Athletes

Aviva Lev-Ari, PhD, RN

2.1.3.4 Preventive Medicine Philosophy: Exercise vs. Drug, IF More of the First THEN Less of the Second

Aviva Lev-Ari, PhD, RN

2.1.3.5 Heart Rate Variability (HRV) as a Tool

Larry H. Bernstein, MD, FCAP

2.1.3.6   Is it Hypertension or Physical Inactivity: Cardiovascular Risk and Mortality – New results in 3/2013

Aviva Lev-Ari, PhD, RN

2.1.3.7  2014 Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism Conference: San Francisco, Ca.   Conference Dates:  San Francisco, CA 3/18-21, 2014

Aviva Lev-Ari, PhD, RN

The Nobel Prize in Physiology or Medicine 2023, jointly to Katalin Karikó and Drew Weissman for their discoveries concerning nucleoside base modifications that enabled the development of effective mRNA vaccines against COVID-19

Reporter: Aviva Lev-Ari, PhD, RN

The breakthrough

Karikó and Weissman noticed that dendritic cells recognize in vitro transcribed mRNA as a foreign substance, which leads to their activation and the release of inflammatory signaling molecules. They wondered why the in vitro transcribed mRNA was recognized as foreign while mRNA from mammalian cells did not give rise to the same reaction. Karikó and Weissman realized that some critical properties must distinguish the different types of mRNA.

RNA contains four bases, abbreviated A, U, G, and C, corresponding to A, T, G, and C in DNA, the letters of the genetic code. Karikó and Weissman knew that bases in RNA from mammalian cells are frequently chemically modified, while in vitro transcribed mRNA is not. They wondered if the absence of altered bases in the in vitro transcribed RNA could explain the unwanted inflammatory reaction. To investigate this, they produced different variants of mRNA, each with unique chemical alterations in their bases, which they delivered to dendritic cells. The results were striking: The inflammatory response was almost abolished when base modifications were included in the mRNA. This was a paradigm change in our understanding of how cells recognize and respond to different forms of mRNA. Karikó and Weissman immediately understood that their discovery had profound significance for using mRNA as therapy. These seminal results were published in 2005, fifteen years before the COVID-19 pandemic.

SOURCE

https://www.nobelprize.org/prizes/medicine/2023/press-release/

Other Nobel Prize Winners included in this category of research include N = 21

Archive for the ‘Nobel Prize Winners’ Category

https://pharmaceuticalintelligence.com/category/interviews-with-scientific-leaders/nobel-prize-winners/

See other Interviews with Scientific Leaders: N=302

https://pharmaceuticalintelligence.com/biomed-audio-podcast-library-lpbi-group/

 

The Current Impact and Future of Technology within Cardiovascular Surgery

Reporter: Arav Gandhi, Research Assistant 2, Domain Content: Cardiovascular Diseases, Series A

 

Medical professionals have been able to explore new methods and strategies to tackle complex medical conditions, especially with the limitations of other pre-existing conditions. For instance, through recent cardiology advancements, if the patient requires a heart transplant due to heart failure disease and is unable to undergo a human donor heart transplant as a result of pre-existing disease conditions or existing internal bleeding complications, there is a greater alternative to leaving it untreated. Medical professionals developed alternatives to humman donor transplants. One such a solution is transplanting a genetically modified pig heart, a new advanced experimental procedure that has been used over recent cases. Researchers continue to develop solutions that not only presents an alternative to current methods but also continue to maximize the potential of medical devices technology and of our understanding of medicine.

Recently, cardiologists at Henry Ford Health Hospital found themselves as the first physicians in the United States to employ an investigational device to treat a patient with severe tricuspid regurgitation. Having never been experimented upon prior to the situation, the K-Clip Transvascular Tricuspid Repair System utilizes a corkscrew anchor, which then clips the ring-shaped region of the valve. Similar to most dire situations where new technology is used, the patient, an 85-year-old male, continued to experience worsening symptoms for an entire year. His tricuspid valve, key in ensuring blood flow to the right ventricle and then to the pulmonary valve, was enlarged from his condition, resulting in the mass of his heart tripling in size. Cardiologists were then prompted to either utilize the new procedure or go untreated. With optimism, the cardiologists selected the procedure and applied a unique approach of an incision through the neck to reduce further risks of opening the chest and placed the device using real-time 3D imaging and 4D modeling. The medical professionals followed a minimally invasive procedure through the neck in contrast to traditional open-heart surgery and effectively employed recent advancements in imaging and modeling to ensure precision when planting the device, a new artificial tricuspid valve. The patient was later reported to have experience improve in the valve condition and a significant decrease in leakage, along with an improvement in his overall quality of life. 

As a result, researchers should continue to focus not only on understanding undiscovered diseases and complications but also on developing alternative solutions to resolve cases in which the best practice approach can not be applied.

With the advancements in technology, the true extent of its application can not be discovered without experimentation and the application of imaging and other devices to resolve certain conditions. Beyond the technology itself, the introduction of new methods allows for less costly treatment plans, aiding especially those who come from a low-income background and currently struggle to afford basic healthcare. In the united States they are covered by MedicAid at all ages and by Medicare at age 65 and beyond. This is not the case in many countries in the World excluding Europe. The overall development of the field of medicine through advancement of medical technologies can indirectly allow for a improvement to the overall Global health care delivery and ascertain an increased life expectancies. This is primarily true, chiefly, in developing countries where established surgeries to resolve complex medical conditions still have the ability to achieve life-changing quality of life and longevity.

To learn more about the topic, check out the article below.

SOURCE

Walter, Michael. “Cardiologists Use New Annular Clipping Device for First Time in Us to Treat Severe Tricuspid Regurgitation.” Cardiovascular Business, Innovate Healthcare, 15 Sept. 2023, cardiovascularbusiness.com/topics/clinical/interventional-cardiology/cardiologists-severe-tricuspid-regurgitation-valve-k-clip?utm_source=newsletter

Other related articles on tricuspid valve procedures published in this Open Access Online Journal, include the following:

Volume Six: Interventional Cardiology for Disease Diagnosis and Cardiac Surgery for Condition Treatment

https://www.amazon.com/dp/B07MKHDBHF

On Amazon.com since 12/24/2018

Chapter 13: Valve Replacement, Valve Implantation and Valve Repair

 

The Voice of Series A Content Consultant: Justin D. Pearlman, MD, PhD, FACC

As catheter techniques evolved to compete with bypass surgery they progressed from balloon cracking of obstructive lesions (POBA=plain old balloon angioplasty) to placement of stents (wire fences). Surgeons sometimes use in-stent valves, and now devices analogous to in-stent valves can be placed by catheter for valve replacement in patients with too much co-morbidity to go through heart surgery. Aortic valve replacement by stent (TAVR) has had sufficient success to be considered for all patients who have sufficient impairment to merit intervention. The diameter is large, so a vascular surgeon participates in the arterial access and repair of the access site.

13.5   Tricuspid Valve

13.5.1 First-in-Man Mitral Valve Repairs Device used for Tricuspid Valve Repair: Cardioband used by University Hospital Zurich Heart Team

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/10/13/first-in-man-mitral-valve-repairs-device-used-for-tricuspid-valve-repair-cardioband-used-by-university-hospital-zurich-heart-team/

 

13.5.2 Advances and Future Directions for Transcatheter Valves – Mitral and Tricuspid valve repair technologies now in development

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/06/advances-and-future-directions-for-transcatheter-valves-mitral-and-tricuspid-valve-repair-technologies-now-in-development/

SOURCE

Volume Six: Interventional Cardiology for Disease Diagnosis and Cardiac Surgery for Condition Treatment