The Quest for Height: Grow Taller | Increase Height | Bone Size

Web Name: The Quest for Height: Grow Taller | Increase Height | Bone Size

WebSite: http://www.heightquest.com

ID:90391

Keywords:

for,Height,The,

Description:

Control F for (*NEW*) for two breakthrough studies from 2004-2005 that provides evidence that LSJL can work on adults provided the stimulating caused by bite jumpling appliances(any experts on dentistry?) is to LSJL and how similar the mandible is to a long bone such as the tibia. These two studies have been enhanced with new figures and analysis.It has been shown that there is endochondral ossification involved in both osteoarthritis and that occurs in normal aging. Why doesn't this articular cartilage ossification result in height increase? Maybe enhancing this process of the articular cartilage can result in height increase of course you'd have to find a way preserve the articular cartilage from fully ossifying to maintain joint integrity.The following studies serve as a bit of a proof of concept for adult bone length increase by showing that the two most distal of the three finger bones can increase in length with age and that the skull bone can increase in length.Here are some selections from a statement by Roy Wuthier, a retired scientist in regards to non-growth plate methods of bone growth:"Not all bone growth occurs via growth plate-dependent mechanisms. Thegrowth of phalanx bone apparently is not totally dependent on growthplate elongation. As you realize, appositional growth can be mediatedvia osteoblasts that reside under the periosteal membrane. Thus inphalanx bones, both types of bone growth must contribute to theirexpansion during overall skeletal growth." -so perhaps on the proximal end of the phalanx bone there may be a periosteal membrane despite being separated by articular cartilage."During typical long bone growth (elongation), you will note that theends of the long bones (where the growth plates reside) have a largercross-sectional area than occurs at the mid-shaft. The cells thatsculpt the shape of the long bones are the osteoclasts which have theability to remove bone. In fact in a genetic disease where osteoclastformation is suppressed, the shape of the long bones is almost"post-like" with no reduction in mid-shaft cross-sectional area." -Perhaps the larger cross-sectional area of the epiphysis formed by growth plate growth facilitates osteoclast absorption. Thus, osteoclasts may be able to remove bone that is generated by endochondral ossification at a fast enough rate such that there is no net bone length increase. And, in ends of the bones not formed by growth plates don't have as large a cross-sectional area favoring absorption thus apposition at the ends of the bones is greater than osteoclast resorption.A way to test this is with osteoclast inhibitors however articular cartilage endochondral ossification is slow and osteoclasts are needed for many functions. You could elevate HGH levels which increases both bone formation and resorption thus allowing you to safely lower osteoclast levels. HGH would also increase the rate of the growth so it could occur in a reasonable time frame. And then see if articular cartilage endochondral ossification could make you taller.Metacarpophalangeal length changes in humans during adulthood: A longitudinal studyMetacarpophalangeal refers to hand bones essentially."Total lengths of the 19 diaphyseal hand bones were measured from standardized radiographs of healthy American whites as young adults (ca. 21 years) and again at ca. 55 years of age. The four hand-bone rows exhibit distinctive length changes: Distal and middle phalanges continue to increase significantly in length{the distal phalange may have periosteum at the distal end of the bone so it may be able to grow by appositional growth but that is not true of of the middle phalange}, proximal phalanges constitute a transition zone of little change, and metacarpals uniformly decrease in length[there are three bones in a non thumb finger. The end bone is the distal bone and the one closest to the the end is the proximal phalange. The metacarpals are part of the hand.]. Clear-cut sex differences are noteworthy: Males change more (lose more in some bone rows, gain more in others) than females. Progressive elongation was greatest in the distal phalanges where apposition around the distal aspect ( tufting ) is not constrained by a joint or epiphysis. Loss of bone length in the metacarpals by subchondral resorption is consistent with documented reductions in activity levels and grip strength with age, as well as diminished joint spaces which alter loading of the joints."The increase in bone length was about 0.34 mm per decade."To testfor [the possibility that the bone length gain was due to residual gain due to growth plate growth], we partitioned the sample into thosecases whose younger-adult age at examination was less than 25 years and those with aradiograph after 25 years of age. Using atwo-way factorial analysis of variance,grouping by age grade and sex, none of the 19tests achieved statistical significance. ""In the distal and middle phalangesmost of the increase was accounted for byprogressive apposition at the distal, epiphysis-free ends of the bones"If you look at the phalanx x-rays you can see that distal ends of the bones do not have a growth plate.Only the proximal(closest to the body) side has growth plates. Maybe bone growth can be renewed if you remove the epiphysis somehow. LSJL via fluid based shear strain may degrade some of the epiphysis allowing for new height growth."thedistal phalanges, which exhibit appreciableincrease, are unique in not being constrained distally by a joint or epiphysis""When cartilagethickness exceeds the critical dimensionsthat limit nutrition by diffusion, the cartilage cells hypertrophy and degenerate, thespaces become vascularized, and osteoblastsdevelop to initiate endochondral bone formation in the midst of the articular cartilage."Continuing bone growth throughout life: A general phenomenon"Cross-sectional data on 2799 subjects from five different populations and longitudinal data on 113 older adults indicate continuing adult bone growth in the second metacarpal. Similar 6-decade increases in the size of the cranium confirm continuing bone growth as a general phenomenon not necesarily related to weightbearing or flexion stress and representing an increase of approximately 10% in skeletal volume concomitant with the major age-associated decrease in skeletal mass.""there is a small but completely systematic three-decade gain inmetacarpal width at mid-shaft in bothsexes and all five populations sampled"The scientists reported an increase in skull length.Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998000/"Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging." -Can we translate this into height?"Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based.""Strain alone can induce a significant increase in bone morphogenetic protein 2 (BMP2) mRNA levels in human BM-MSPCs without any addition of osteogenic supplements"" Excessive strain causes regional microdamage, which leads to targeted remodeling removing the damaged bone and a larger volume of the surrounding undamaged bone, this temporary volume deficit increases the strain in neighboring bone and the potential establishment of a vicious cycle between damage and repair""Bone modeling has been demonstrated in aging humans. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at long bones and ribs with aging""Osteocytes are terminally differentiated osteoblasts which become embedded in newly formed bone matrix and produce sclerostin. Sclerostin binds to lipoprotein-related peptide (LRP) 5/6 and thereby inhibits LRP5/6 from binding to the frizzled receptor and activating the Wnt pathway"Extreme elongation of the transverse processes of the fifth lumbar vertebra: an unusual variant."The fifth lumbar vertebra has massive transverse processes that are continuous with the pedicle and encroach the body of the vertebra. These processes are mainly meant for the attachment of the iliolumbar ligament. With increasing age, the iliolumbar ligament can undergo secondary degenerative changes such as calcification, hyalinization, and myxoid degeneration. [We discovered an] extremely elongated transverse processes of the fifth lumbar vertebra in a 45-year-old woman who underwent surgery for an intervertebral disc herniation. This unusual variant may be caused by calcification of the iliolumbar ligament rather than a congenital anomaly."Causing calcification of ligaments isn't really reproducible but it's still bone length increase in a 45 year old.If you look figure 1A and 1B you can see that the increase in transverse process is insane with the elongated transverse process being about 3 times longer than the other bones."[There was]a calcifiednodular lesion in the leftpelvic cavity, suggesting thepresence of a calcified uterinemyoma[mesenchymal tumor].""the trabecular bone of thetransverse processes have normal shape and length, and thecompact bone is elongated.""[There was]a large,extruded intervertebral disc on the right side, compressing thedural sac.""the direction of elongation of the transverse processcorresponded to the position of the iliolumbar ligament." Thus providing evidence that the iliolumbar ligament was calcified."The iliolumbar ligament is attached to the tip and theanteroinferior aspect of the transverse processes of the fifthlumbar vertebra" -So the ligament may have been used as a scaffold to grow the bone longer. Maybe a ligament can be inserted into a long bone so you can grow taller forever."the iliolumbar ligament doesnot exist at birth, but develops gradually in the first decadeand attains full differentiation only in the second decade."Mechanical strain leads to condylar growth in adult rats."Mechanical strain produced by forward mandibular positioning was found to enhance mandibular condylar growth in experimental animals and in patients. [We] identify the changes in number and rate of the proliferating mesenchymal cells in mandibular condyles of adult rats and to correlate these changes to the expression of SOX9 and type II collagen under mechanical strain. Seventy-eight 120-day-old female Sprague-Dawley rats{rats generally stop growing at six months} were randomly allotted to six groups, nine animals in each experimental group according to different time points. Cell kinetic studies for expression of PCNA were used to identify number and rate of proliferating mesenchymal cells. Immunostaining of SOX9 and in situ hybridization of Col2a1 gene were carried out. Results showed a significant increase in number of replicating mesenchymal cells and proliferation rate. The expression of SOX9 was enhanced and Col2a1 gene transcript was then activated. The proliferative layer became thicker on experimental day 21. The thickness of chondroblast layer and chondrocyte layer showed significant increase from experimental day 14 to day 30.Mechanical strain produced by mandibular advancement in adult rats promotes the proliferation of mesenchymal cells. Under control of transcription factor SOX9, these mesenchymal cells are then committed to enter the chondrogenic route leading to condylar growth."Producing proliferating of MSCs which then differentiate into chondrocytes via SOX9 is exactly what we're trying to accomplish with LSJL."mandibular advancement reactivates endochondral ossification in the posterior condyle and ultimately results in new bone formation in the condyle""In the adult patients treated with Herbst appliance this would be the result of a reactivation of cells of prechondroblast zone, thus representing an area of active condylar growth""continuous bite jumping devices induce morphological adaptation in the mandible especially the length of condylar head in adult rats""During mandibular growth, the condyle undergoes endochondral ossification and the condylar cartilage acts as a template for bone growth. However, in the adults, the remnant condylar cartilage serves more 'articular' function than 'growth' function. From growing to adults, the thickness of cartilage becomes thinner. It has been reported that the adult rat's condyle is covered by a thin layer of cartilage, which is composed of 2-3 layers of chondrocytes and there is no obvious hypertrophic layer in the cartilage since a weak staining of Type X collagen, the marker of endochondral ossification, was obscured. This result implies that adult rat condyle stops growth or becomes inactive of endochondral ossification. Bone growth in the condyle is closely related to cartilage formation in the growing rats""The fibrous zone of the condylar cartilage of adult rats is composed of several layers of flattened cells . The cells in the proliferative layer, which was densely packed, located beneath the fibrous layer . Underneath the proliferative layer, the cells became chondrospecific and flattened gradually. The extracellular matrix was positively stained with type II collagen and thus this layer was termed as "type II collagen positive layer" in the present stud which may represent the level of expression of type II collagen. The current study showed that the thickness of cartilage in posterior condyle was apparently affected by the bite-jumping device. Analysis showed the thickness of each layer of cartilage in controls was unchanged during the observation period. In the experimental group, there were significant changes observed in all the layers. The thickness of fibrous layer showed significant increase from day 14 of mandibular advancement and was maintained from day 30 to day 60 Mandibular advancement resulted in an increase in the thickness of the proliferative layer on day 21 which was then followed by a decrease to the level found in the matched controls. The thickness of type II collagen positive layer showed a significant increase from experimental day 14. The highest level was presented on experimental day 21 followed by a lower level on day 30. The level of expression of type II collagen expressed on day 60 returned to the level expressed in the controls.""The population [of MSCs] in that of mandibular advancement groups was significantly increased on day 21" No differences were observed in the control group."In the control groups, only a few SOX9 positive cells existed in the proliferative layer. On experimental day 3, SOX9 positive cells were remarkably increased in the proliferative layer of experimental animals. On experimental day 21, the SOX9 positive cells were increased in both proliferative layer and chondroblast layer but no positive staining can be detected in the hypertrophic chondrocyte""mandibular advancement in adult rats resulted in increase in condylar growth as measured by a significant increase in: the number and rate of replicating mesenchymal cells; the expression of transcription factor SOX9, the factor that regulates mesenchymal cell differentiation into chondroblasts; the thickness of cartilage layers and finally increase in the amount of osteocytes that led to increase in the production of new bone in the adult condyles "I'm not sure how much a forward biting device is analagous to LSJL. Maybe someone more familiar with dentistry can help out."[The] significant increase in SOX9 expression level coincided with the rate of proliferation of mesenchymal cells"It should be noted that the population of MSCs began to decline after thirty days. That may be related to an adaptative response and indicates that there may need to be a deconditioning period with LSJL after 30 days."Each group consisted of nine rats with bite-jumping appliances and four untreated controls"On this page is an example of a bite jumping appliance(It's the Herbst) mentioned earlier.Here's the picture of experimental jaw versus control:I'm planning on looking for ectopic signs of cartilage formation later as that is what we're trying to induce with LSJL. However there is some blue staining(which means it's positive for cartilage) on A but it is very faint. Note though that the entire shape of B(experimental) is different than A(control) so there must be some mechanism to achieve that."Alcian blue-PAS staining showing the overview of rat's TMJ condyle at age of 141-day (experimental day 21). The thickness of cartilage in the posterior condyle is remarkably increased by mandibular advancement (B) than that of control (A). Two measurement frames are illustrated on (B), one for the measurement of thickness of layers (1104 811µm, black) and the other frame for the cell counting (547 402µm, red)."Here's the ectopic chondrogenesis highlighted with GIMP(blue line):Here's the Col2a1 expression areas:"In situ hybridization showing the localization of type II collagen (Col2a1) mRNA (marked with arrow) in the condylar cartilage of control (A) and experimental animal (C.D) on experimental day 21. (D) is higher magnification of (C). In situ hybridization with sense probe shows no hybridization signal in the cartilage (B)." So there was no active COL2A1 mRNA production in B which is the control.Arrows point to two possible areas where the bone ends both are distant from the Col2a1 staining indicating that the new growth plate formation is within the bone thus providing evidence for proof of concept for LSJL to form new growth plates within bone.Forward mandibular positioning enhances condylar adaptation in adult rats."The aim of this investigation was to assess quantitatively the adaptive changes in the condyles of adult rats to forward mandibular positioning. The level of types II and X collagen expressed in the condyles of adult rats was compared with that formed in response to forward mandibular positioning and the levels of expression were correlated to the amount of bone formed in response to mandibular advancement. Seventy-eight 120-day-old female Sprague-Dawley rats were included in this study. The rats were randomly allocated to six groups. Each group consisted of nine rats with bite-jumping devices and four untreated controls. The animals in each group were sacrificed on days 3, 7, 14, 21, 30, and 60. Immunostaining was used for the detection of types II and X collagen, while Alcian blue-PAS was used to observe the extracellular matrix and new bone formation. New cartilage was formed in the posterior condyle. The highest level of expression of types II and X collagen were present on day 21, the amount of increase was 247.99 and 540.08 per cent, respectively. The highest level of new bone formation was measured at day 30 of advancement when the amount of increase in new bone formation was 318.91 per cent. Forward mandibular positioning causes changes in the biophysical environment of the temporomandibular joint (TMJ) of adult rats that leads to condylar adaptation."The rats were advanced 4 mm in continuous advancement. I don't know exactly what this means.The study won't let me copy and paste. When I get a chance, I might print the paper out and scan the images in. Click on the link and look at figure 2 for new cartilage growth. Note in figure 2a that the region of new cartilage formation pointed to by the arrow is disconnected from the rest the cartilage. Also note that there is red staining in scattered quantities throughout the entirety of the epiphysis with the exception of that attached to the bone attached to the new red zone. Note that in figure 1 there is staining for Type II Collagen deep within the epiphysis in the control group. In figure 3a there is staining for Type II collagen throughout the entire bone. If you look at figure five bone formed downward furthering the possibility that you can increase bone length via the articular cartilage.If you look at figure 5 you can see the new bone formation.If you look at figure 6, it took until about day 21 to start seeing results and results decreased at day 60 so there could be an adaptive mechanism.It would be interesting to note if intermittent mandibular forward positioning could result in the same objective.Condylar growth after non-surgical advancement in adult subject: a case report."case of altered condylar morphology in adult male with temporomandibular disorders was reported in 30-year-old male patient. Erosion and flattening of the left mandibular condyle were observed by panoramic x-ray. The patient was treated with splint therapy that determined mandibular advancement. Eight months after the therapy, reduction in joint pain and a greater opening of the mouth was observed, although crepitation sounds during mastication were still noticeable.""The mandibular condyle is an ovoidal bony structure that articulates with the temporal bone by means of a biconcave disk.""Both articular surfaces are covered by a connective fibrous tissue (condylar cartilage). On the articular surface of the condyle, the collagen fibres are parallel to the condylar surface, and are in continuity with the fibrous layer of the periosteum.The condylar cartilage covers very dense undifferentiated mesenchyme, within which are multipotential cells, forming either cartilage or bone, depending upon the environmental circumstances" -the presence of this mesenchyme may not be present in other regions."Mandibular condylar cartilage is characterised histologically as fibrocartilage containing a layer of pre-chondroblastic mesenchymal stem cells which can undergo rapid differentiation into chondrocytes.Other forms of mature articular cartilage do not have such progenitor cells and only poorly responsive chondrocytes " -this is a problem. Though I do not think this is entirely true."subcondylar trabecular bone formation is apparently not affected by age" -The study mentioned isEffects of mechanical loads on surface morphology of the condylar cartilage of the mandible in rats., "Hard-diet condyles had a rougher, more porous articular surface while soft/hard-diet condyles were intermediate between nonporous and slightly roughened condyles. None of the condyles showed ridges or elevations on the articular surface. Sex, age and time of the diets did not significantly affect these results."Cell and matrix response of temporomandibular cartilage to mechanical loading."The generation of transgenic mice expressing green fluorescent proteins (GFPs) has greatly aided our understanding of the development of connective tissues such as bone and cartilage. Perturbation of a biological system such as the temporomandibular joint (TMJ) within its adaptive remodeling capacity is particularly useful in analyzing cellular lineage progression. The objectives of this study were to determine: (i) if GFP reporters expressed in the TMJ indicate the different stages of cell maturation in fibrocartilage and (ii) how mechanical loading affects cellular response in different regions of the cartilage.Four-week-old transgenic mice harboring combinations of fluorescent reporters (Dkk3-eGFP, Col1a1(3.6 kb)-GFPcyan, Col1a1(3.6 kb)-GFPtpz, Col2a1-GFPcyan, and Col10a1-RFPcherry) were used to analyze the expression pattern of transgenes in the mandibular condylar cartilage (MCC). To study the effect of TMJ loading, animals were subjected to forced mouth opening with custom springs exerting 50 g force for 1 h/day for 5 days. Dynamic mineralization and cellular proliferation (EdU-labeling) were assessed in loaded vs control mice.Dkk3 expression was seen in the superficial zone of the MCC, followed by Col1 in the cartilage zone, Col2 in the prehypertrophic zone, and Col10 in the hypertrophic zone at and below the tidemark. TMJ loading increased expression of the GFP reporters and EdU-labeling of cells in the cartilage, resulting in a thickness increase of all layers of the cartilage. In addition, mineral apposition increased resulting in Col10 expression by unmineralized cells above the tidemark.The TMJ responded to static loading by forming thicker cartilage through adaptive remodeling.""Unlike most hyaline articular cartilages in the appendicular joints, the MCC is classified as fibrocartilage ""new mineralized cartilage apposition within the 24-hour period"If you look at figure 3 you can see signs of increased endochondral ossification."The TB signal extended into in the mineralized cartilage zone and protruded further into the subchondral bone in the loaded group.""loading enhances the accumulation of mineralized cartilage resulting in a greater separation of the unmineralized cartilage from the subchondral bone." -this seems to indicate that maybe endochondral ossification did not occur. And only cartilage mineralization."The temporomandibular joint (TMJ) disc consists mainly of collagen fibers and proteoglycans constrained in the interstices of the collagen fiber mesh. This construction results in a viscoelastic response of the disc to loading and enables the disc to play an important role as a stress absorber during function. The viscoelastic properties depend on the direction (tension, compression, and shear) and the type of the applied loading (static and dynamic). The compressive elastic modulus of the disc is smaller than its tensile one because the elasticity of the disc is more dependent on the collagen fibers than on the proteoglycans. When dynamic loading occurs, the disc is likely to behave less stiffly than under static loading because of the difference of fluid flow through and out of the disc during loading. In addition, the mechanical properties change as a result of various intrinsic and extrinsic factors in life such as aging, trauma, and pathology. Information about the viscoelastic behavior of the disc is required for its function to be understood and, for instance, for a suitable TMJ replacement device to be constructed. In this review, the biomechanical behavior of the disc in response to different loading conditions is discussed""The articular surfaces of the TMJ are highly incongruent. Due to this incongruence, the contact areas of the opposing articular surfaces are very small. When joint loading occurs, this may lead to large peak loads, which may cause damage to the cartilage layers on the articular surfaces. The presence of a fibro-cartilaginous disc in the joint is believed to prevent these peak loads since it is capable of deforming and adapting its shape to that of the articular surfaces. These deformations ensure that loads are absorbed and spread over larger contact areas. In addition, the shape of the disc and the area and location of its contact areas with the articular surfaces change continuously during jaw movement to adapt to the changing geometry of the articular surfaces of the mandible and temporal bone."" while translation of the condyle in the forward direction to obtain a protrusive or open jaw position leads to a concentration of the deformation in the lateral part of the disc.""When the disc is compressed or stretched in one direction, not only will it deform in that direction (primary strain), but it will also become thicker or thinner, respectively, in a direction perpendicular to it (secondary strain). ""the small permeability of the collagen network impedes interstitial fluid flow through this network. Therefore, the loads acting on a cartilaginous structure as the disc are initially transmitted by a pressurization of the incompressible fluid without much deformation of the collagen network. Nonetheless, fluid flow through the collagen network leads to a gradual transfer of the load from the fluid to the collagen fibers. When further loaded, the collagen network deforms, and water is squeezed out of the disc while the orientation of the collagen fibers is re-arranged ""The movement of fluid out of the disc and the re-arrangement of the collagen fibers are reversible when the disc is not deformed beyond the physiologic strain range. Even application of significant long-term stresses beyond the physiologic strain range introduces but minor changes in fiber waviness and alignment within the disc. This enables the disc to adapt its shape continuously to fit in the space between the opposing articular surfaces and to distribute loads suitably in the TMJ. Collagen gives the disc much of its tensile stiffness and strength. ""mechanical stress affects the GAG synthesis in the disc, especially that of chondroitin sulfate, dermatan sulfate, and hyaluronic acid. Static loading decreases the proteoglycan synthesis in cartilaginous structures, whereas dynamic loading is positively related to this synthesis and is considered as an important factor for maintenance of the homeostasis of the joint cartilage " -maybe because dynamic loading drives fluid flow and allows more nutrients to get in?Here's a study on how progenitor cells in the cartilage may play a role in this process:Progenitor Cells of the Mandibular Condylar Cartilage.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613756/"The secondary cartilage of the mandibular condyle is unique as it undergoes endochondral ossification during growth and robustly remodels in response to changes in its mechanical loading environment. This cartilage is derived from mesenchymal progenitor cells that express markers of early osteoblast differentiation, namely alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2). Interestingly, these progenitor cells then differentiate into cartilage with appropriate mechanical loading. Our laboratory has determined that these cells can be labeled by osteoblast progenitor cell markers, including the 3.6 fragment of the rat collagen type 1. However, the role these mesenchymal progenitor cells play in adult mandibular condylar cartilage maintenance and adaptation, as well as the existence of a more potent progenitor cell population within the mandibular condylar cartilage, remain in question. Further characterization of these cells is necessary to determine their potency and regenerative capacity to elucidate their potential for regenerative therapy.""After the cessation of growth, the mandibular condylar cartilage becomes phenotypically similar to other articular cartilages by entering into a post-mitotic state""there still appears to be a progenitor cell population capable of reactivating in response to changes in mechanical loading" -where these progintor cells are present in other articular cartilage is the question.Progenitor cells in other articular cartilage types:Origin and function of cartilage stem/progenitor cells in osteoarthritis."Articular cartilage is a physiologically non-self-renewing avascular tissue with a singular cell type, the chondrocyte, which functions as the load-bearing surface of the arthrodial joint. Injury to cartilage often progresses spatiotemporally from the articular surface to the subchondral bone, leading to development of degenerative joint diseases such as osteoarthritis (OA). Although lacking intrinsic reparative ability, articular cartilage has been shown to contain a population of stem cells or progenitor cells, similar to those found in many other adult tissues, that are thought to be involved in the maintenance of tissue homeostasis. These so-called cartilage-derived stem/progenitor cells (CSPCs) have been observed in human, equine and bovine articular cartilage, and have been identified, isolated and characterized on the basis of expression of stem-cell-related surface markers, clonogenicity and multilineage differentiation ability. However, the origin and functions of CSPCs are incompletely understood. We review here the current status of CSPC research and discuss the possible origin of these cells, what role they might have in cartilage repair, and their therapeutic potential in OA.""mild enzymatic insult to the cartilage ECM promoted CPCs migration in cultured articular cartilage explants."Superficial cells are self renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice"Articular cartilage has little regenerative capacity. Recently, genetic lineage tracing experiments have revealed chondrocyte progenitors at the articular surface. We further characterized these progenitors by using in vivo genetic approaches. Histone H2B green fluorescent protein retention revealed that superficial cells divide more slowly than underlying articular chondrocytes. Clonal genetic tracing combined with immunohistochemistry revealed that superficial cells renew their number by symmetric division, express mesenchymal stem cell markers, and generate chondrocytes via both asymmetric and symmetric differentiation. Quantitative analysis of cellular kinetics, in combination with phosphotungstic acid enhanced micro computed tomography, showed that superficial cells generate chondrocytes and contribute to the growth and reshaping of articular cartilage. Furthermore, we found that cartilage renewal occurs as the progeny of superficial cells fully replace fetal chondrocytes during early postnatal life. Thus, superficial cells are self renewing progenitors that are capable of maintaining their own population and fulfilling criteria of unipotent adult stem cells. Furthermore, the progeny of these cells reconstitute adult articular cartilage de novo , entirely substituting fetal chondrocytes." -We need to know how effective these stem cells are at self renewing as adults for adult height increase via articular cartilage."whereas deep articularchondrocytes in adult mice are derived from cells thatwere initially at the cartilage surface in newborn mice,which is consistent with appositional growth, beneath thesurface cartilage, growth is also interstitial""superficial cells are slow-dividingprogenitors of middle and deep zone chondrocytes"Regional shape change in adult facial bone curvature with age. "Three-dimensional semilandmarks representing the curvature of the orbits, zygomatic arches, nasal aperture, and maxillary alveolar process were collected from a cross-sectional cranial sample of mixed sex and ancestry (male and female; African- and European-American), partitioned into three age groups (young adult = 18-39; middle-aged = 40-59 years; and elderly = 60+ years). Each facial region's semilandmarks were aligned into a common coordinate system via generalized Procrustes superimposition. Regional variation in shape was then explored via a battery of multivariate statistical techniques. Age-related shape differences were detected in the orbits, zygomatic arches, and maxillary alveolar process.""adult craniofacial curvature shape is not static throughout human life. Instead, age-related spatial modifications occur in various regions of the craniofacial skeleton.""Increases in craniofacial dimensions such as facial height, mandibular length, bizygomatic and bigonial breadth, and head circumference, length, and breadth have been detected with advancing age"Natural craniofacial changes in the third decade of life: a longitudinal study."Natural head position lateral cephalometric films and dental casts of 30 people (14 women and 16 men) were evaluated. The mean age at the beginning of the observation period was 22.35 years for the women and 22.19 years for the men, and the observation period was approximately 10 years. Cephalometric films were superimposed by the structural method, and the measurements of the dental casts were made with a digital caliper. All tracings were digitized, and changes in the 65 cephalometric and 10 dental cast measurements were evaluated statistically. In this early adult period, small changes were found in the craniofacial and craniocervical parameters; the changes were more significant in the women. The most significant changes were found in the vertical dimension. The total anterior face height increased in both genders, while the lower anterior face height increased significantly in the female group. Soft tissue measurements reflected the vertical skeletal changes. The retrusion of the upper lip was significant in the women, and the upper lip thickness decreased in both genders. In the dentoalveolar region, the main movement was eruption of the teeth. The overbite amount increased significantly only in the female group. All dental arch measurements decreased in both sexes. The decrease in the mandibular arch length discrepancy was significant in the men."

TAGS:for Height The 

<<< Thank you for your visit >>>

Websites to related :
www.gernot-vogel.de

  in unserer Milchstraße existieren,aber wir habe keine Ahnungwie viele Arten die Erde bev lkern.Hat der Mensch kein Interesse an seinen Mitbewohnern?M

BC Big Tree Website | UBC Facult

  Coastal Douglas-fir"Big Lonely Doug", Port Renfrew, BC BigTree ID#386Nominators: TJ Watt & Ken Wu, Photo: TJ Watt Sitka SpruceSan Juan Spruce, Port Re

▷ Dovolená v Itálii 2020 / 20

  Dovolená Itálie - informaceIdeální dobou pro dovolenou v Itálii u moře je samozřejmě léto - červenec a srpen, ale do Itálie můžete vyrazi

Howe Library | Howe Library

  Ask a Librarian Threre are lots of ways to contact a librarian. Choose what works best for you. HOURS TODAY 9:00 am - 6:00 pm Reference Desk - Virtual

Embrace the Moon - Tai Chi and Q

  Welcome To Embrace The Moon Tai Chi and Qigong School in SeattleA Practice For the AgesFall Schedule Begins September 20Regular Schedule will be Live

tygo.nl

  Welcome to the home of tygo.nl To change this page, upload your website into the public_html directory Date Created: Thu Jun 6 15:07:19 2019

Periscope Skandinávie

  ZÁJEZDYTRAJEKTYZeměnerozhoduje DánskoEstonskoFaerské ostrovyFinskoGrónskoIrskoIslandLaponskoLitvaLotyšskoNorskoNorsko - Fjordy Norsko - LofotyPo

CHRISTMAS CAROLS and SONGS ***

  Christmas CarolsThe lyrics of carols, and origins of the most popular Christmas carols are included on this site, together with additional non carols

bodylanguage.net

  bodylanguage.net您访问的域名正在出售!欲知价格?敬请致电!400-842-8492或联系我们的美国客户支持+1 339-222-5134我们可以通过电话为您提供报价,帮助您完成购买流程

Orchid Species - Orchids from ar

  Miltoniopsis Andrea West 'Ambre's Charm'In Spike NowSALE $19.90Oncidium Heaven Scent 'Sweet Baby'In Bud/Bloom NowSALE $19.90Pot Size: 2" Blooming Size

ads

Hot Websites